Challenges in interpreting allergen microarrays in relation to clinical symptoms: A machine learning approach
نویسندگان
چکیده
BACKGROUND Identifying different patterns of allergens and understanding their predictive ability in relation to asthma and other allergic diseases is crucial for the design of personalized diagnostic tools. METHODS Allergen-IgE screening using ImmunoCAP ISAC(®) assay was performed at age 11 yrs in children participating a population-based birth cohort. Logistic regression (LR) and nonlinear statistical learning models, including random forests (RF) and Bayesian networks (BN), coupled with feature selection approaches, were used to identify patterns of allergen responses associated with asthma, rhino-conjunctivitis, wheeze, eczema and airway hyper-reactivity (AHR, positive methacholine challenge). Sensitivity/specificity and area under the receiver operating characteristic (AUROC) were used to assess model performance via repeated validation. RESULTS Serum sample for IgE measurement was obtained from 461 of 822 (56.1%) participants. Two hundred and thirty-eight of 461 (51.6%) children had at least one of 112 allergen components IgE > 0 ISU. The binary threshold >0.3 ISU performed less well than using continuous IgE values, discretizing data or using other data transformations, but not significantly (p = 0.1). With the exception of eczema (AUROC~0.5), LR, RF and BN achieved comparable AUROC, ranging from 0.76 to 0.82. Dust mite, pollens and pet allergens were highly associated with asthma, whilst pollens and dust mite with rhino-conjunctivitis. Egg/bovine allergens were associated with eczema. CONCLUSIONS After validation, LR, RF and BN demonstrated reasonable discrimination ability for asthma, rhino-conjunctivitis, wheeze and AHR, but not for eczema. However, further improvements in threshold ascertainment and/or value transformation for different components, and better interpretation algorithms are needed to fully capitalize on the potential of the technology.
منابع مشابه
Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملChallenges of culturally and linguistically different healthcare students in learning environments
The increased number of international studentsin higher education systems is recognizedas beneficial not only economically but also interms of preparation of the workforce for theglobal environment. It is believed that diversityin the student cohort can also be beneficial fordomestic students in terms of increasing culturalawareness and achieving cultural competencygoals. Culturally and linguis...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملDebt Collection Industry: Machine Learning Approach
Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...
متن کامل